Quantitative susceptibility imaging with homotopic L0 minimization programming: preliminary study of brain

نویسندگان

  • J. Liu
  • T. Liu
  • L. D. Rochefort
  • M. R. Prince
  • Y. R. Wang
چکیده

INTRODUCTION Susceptibility-weighted imaging (SWI) technique is used for neuroimaging to improve visibility of iron deposits, veins, and hemorrhage [1]. Quantitative susceptibility imaging (QSI) improves upon SWI by measuring iron in tissues, which can be useful for molecular/cellular imaging to analyze brain function, diagnose neurological diseases, and quantify contrast agent concentrations. Susceptibility quantification can be achieved by inverting local magnetic field to magnetization source. The illposedness of this inversion can be resolved with regularization. L1 norm regularization minimization has shown good susceptibility estimation assuming a sparse susceptibility distribution [2]. However, L0 norm is the optimum for sparse distributions. Although L0 norm minimization programming is NP-hard, homotopic L0 norm minimization can be used to approach a solution that approximates L0 solution. In this study QSI of brain with hemorrhage was derived with homotopic L0 norm minimization programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopic l0 minimization technique applied to dynamic cardiac MR imaging

Introduction: The l1 minimization technique has been empirically demonstrated to exactly recover an S-sparse signal with about 3S-5S measurements [1]. In order to get exact reconstruction with smaller number of measurements, recently, for static images, Trzasko [2] has proposed homotopic l0 minimization technique. Instead of minimizing the l0 norm which achieves best possible theoretical bound ...

متن کامل

Sparse Reconstruction of Breast MRI Using Homotopic L0 Minimization in a Regional Sparsified Domain

The use of MRI for early breast examination and screening of asymptomatic women has become increasing popular, given its ability to provide detailed tissue characteristics that cannot be obtained using other imaging modalities such as mammography and ultrasound. Recent application-oriented developments in compressed sensing theory have shown that certain types of magnetic resonance images are i...

متن کامل

A Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI

INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...

متن کامل

A Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI

INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...

متن کامل

TRZASKO AND MANDUCA: HIGHLY UNDERSAMPLED MAGNETIC RESONANCE IMAGE RECONSTRUCTION VIA HOMOTOPIC L0-MINIMIZATION 1 Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic L0-Minimization

In clinical Magnetic Resonance Imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in Compressive Sensing (CS) theory, several authors have demonstrated that certain classes of MR images which possess sparse representations in some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008